Sammanfattning
This paper considers polyphonic pattern matching in symbolically encoded music under transposition invariance. We show how, in two specific retrieval problems, the worst-case time complexities can be improved by an order of magnitude by applying a relatively straightforward algorithm design technique. Moreover, the technique applies to most of the previously best-known algorithms for the other cases of the problem category, giving comparable worst-case running times. In general, given two point sets, a musical work T and a pattern P , the task is to find possibly transposed occurrences of P in T . The occurrences may be full or partial, with or without time-warping or time-scaling. The technique uses a merge-like approach to incrementally build pattern occurrences using sorted lists of notes. The algorithms search for incomplete matches that are subsequently extended as far as possible.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Mathematics and Computation in Music. MCM 2024 |
Redaktörer | T Noll, M Montiel, F Gómez, O.C. Hamido, J.L. Besada, J.O. Martins |
Förlag | Springer |
Utgivningsdatum | maj 2024 |
Sidor | 242–254 |
ISBN (elektroniskt) | 978-3-031-60638-0 |
DOI | |
Status | Publicerad - maj 2024 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | International Conference on Mathematics and Computation in Music - Coimbra, Portugal Varaktighet: 18 juni 2024 → 21 juni 2024 Konferensnummer: 9 |
Publikationsserier
Namn | Lecture Notes in Computer Science |
---|---|
Volym | 14639 |
Vetenskapsgrenar
- 113 Data- och informationsvetenskap