Analysing concatenation approaches to document-level NMT in two different domains

Yves Scherrer, Jörg Tiedemann, Sharid Loáiciga

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

In this paper, we investigate how different aspects of discourse context affect the performance of recent neural MT systems. We describe two popular datasets covering news and movie subtitles and we provide a thorough analysis of the distribution of various document-level features in their domains. Furthermore, we train a set of context-aware MT models on both datasets and propose a comparative evaluation scheme that contrasts coherent context with artificially scrambled documents and absent context, arguing that the impact of discourse-aware MT models will become visible in this way. Our results show that the models are indeed affected by the manipulation of the test data, providing a different view on document-level translation quality than absolute sentence-level scores.
Originalspråkengelska
Titel på värdpublikationThe Fourth Workshop on Discourse in Machine Translation : Proceedings of the Workshop
Antal sidor11
UtgivningsortStroudsburg
FörlagThe Association for Computational Linguistics
Utgivningsdatum1 nov. 2019
Sidor51-61
ISBN (elektroniskt)978-1-950737-74-1
DOI
StatusPublicerad - 1 nov. 2019
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangWorkshop on Discourse in Machine Translation - Hong Kong, Kina
Varaktighet: 3 nov. 20193 nov. 2019
Konferensnummer: 4

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap
  • 6121 Språkvetenskaper

Citera det här