Annealed Importance Sampling for Structure Learning in Bayesian Networks

Teppo Mikael Niinimäki, Mikko Koivisto

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

We present a new sampling approach to Bayesian learning of the Bayesian network structure. Like some earlier sampling methods, we sample linear orders on nodes rather than directed acyclic graphs (DAGs). The key difference is that we replace the usual Markov chain Monte Carlo (MCMC) method by the method of annealed importance sampling (AIS). We show that AIS is not only competitive to MCMC in exploring the posterior, but also superior to MCMC in two ways: it enables easy and efficient parallelization, due to the independence of the samples, and lower-bounding of the marginal likelihood of the model with good probabilistic guarantees. We also provide a principled way to correct the bias due to order-based sampling, by implementing a fast algorithm for counting the linear extensions of a given partial order.
Originalspråkengelska
Titel på gästpublikationProceedings of the Twenty-Third International Joint Conference on Artificial Intelligence
RedaktörerFrancesca Rossi
Antal sidor7
FörlagAAAI Press
Utgivningsdatum2013
Sidor1579-1585
ISBN (tryckt)978-1-57735-633-2
StatusPublicerad - 2013
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangInternational Conference on Artificial Intelligence - Beijing, Kina
Varaktighet: 3 aug 20139 aug 2013
Konferensnummer: 23

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap

Citera det här