Approach to equilibrium for the phonon Boltzmann equation

Jean Bricmont, Antti Kupiainen

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

Sammanfattning

We study the asymptotics of solutions of the Boltzmann equation describing the kinetic limit of a lattice of classical interacting anharmonic oscillators. We prove that, if the initial condition is a small perturbation of an equilibrium state, and vanishes at infinity, the dynamics tends diffusively to equilibrium. The solution is the sum of a local equilibrium state, associated to conserved quantities that diffuse to zero, and fast variables that are slaved to the slow ones. This slaving implies the Fourier law, which relates the induced currents to the gradients of the conserved quantities.
Originalspråkengelska
TidskriftCommunications in Mathematical Physics
Volym281
Nummer1
Sidor (från-till)179-202
Antal sidor24
ISSN0010-3616
DOI
StatusPublicerad - 2008
MoE-publikationstypA1 Tidskriftsartikel-refererad

Vetenskapsgrenar

  • 114 Fysik
  • 111 Matematik

Citera det här