Assessing Grammatical Correctness in Language Learning

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

We present experiments on assessing the grammatical correctness of learners’ answers in a language-learning System (references to the System, and the links to the released data and code are withheld for anonymity). In particular, we explore the problem of detecting alternative-correct answers: when more than one inflected form of a lemma fits syntactically and semantically in a given context. We approach the problem with the methods for grammatical error detection (GED), since we hypothesize that models for detecting grammatical mistakes can assess the correctness of potential alternative answers in a learning setting. Due to the paucity of training data, we explore the ability of pre-trained BERT to detect grammatical errors and then fine-tune it using synthetic training data. In this work, we focus on errors in inflection. Our experiments show a. that pre-trained BERT performs worse at detecting grammatical irregularities for Russian than for English; b. that fine-tuned BERT yields promising results on assessing the correctness of grammatical exercises; and c. establish a new benchmark for Russian. To further investigate its performance, we compare fine-tuned BERT with one of the state-of-the-art models for GED (Bell et al., 2019) on our dataset and RULEC-GEC (Rozovskaya and Roth, 2019). We release the manually annotated learner dataset, used for testing, for general use.
Originalspråkengelska
Titel på gästpublikationProceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications
Antal sidor12
UtgivningsortStroudsburg
FörlagThe Association for Computational Linguistics
Utgivningsdatumapr 2021
Sidor135-146
ISBN (elektroniskt)9781954085114
StatusPublicerad - apr 2021
MoE-publikationstypA4 Artikel i en konferenspublikation
Evenemang16th Workshop on Innovative Use of NLP for Building Educational Applications - Online
Varaktighet: 20 apr 202120 apr 2021

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap

Citera det här