Projekt per år
Sammanfattning
We prove that the class of trilinear multiplier forms with singularity over a one-dimensional subspace, including the bilinear Hilbert transform, admits bounded L-p-extension to triples of intermediate UMD spaces. No other assumption, for instance of Rademacher maximal function type, is made on the triple of UMD spaces. Among the novelties in our analysis is an extension of the phase-space projection technique to the UMD-valued setting. This is then employed to obtain appropriate single-tree estimates by appealing to the UMD-valued bound for bilinear Calderon-Zygmund operators recently obtained by the same authors.
Originalspråk | engelska |
---|---|
Tidskrift | International Mathematics Research Notices |
Volym | 2022 |
Nummer | 7 |
Sidor (från-till) | 5256–5319 |
Antal sidor | 64 |
ISSN | 1073-7928 |
DOI | |
Status | Publicerad - 23 mars 2022 |
MoE-publikationstyp | A1 Tidskriftsartikel-refererad |
Vetenskapsgrenar
- 111 Matematik
Projekt
- 2 Slutfört
-
Singular integrals and the geometry of measures
Martikainen, H. & Oikari, T.
Valtion perusrahoitus/hankkeet
01/01/2018 → 31/12/2020
Projekt: Helsingfors Universitetets treåriga forskningsprojekt
-
Geometric and dyadic harmonic analysis: general measures and rectifiability
Martikainen, H. & Airta, E.
01/09/2016 → 31/08/2021
Projekt: Forskningsprojekt