Borel* Sets in the Generalized Baire Space and Infinitary Languages

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKapitelVetenskapligPeer review

Sammanfattning

We start by giving a survey to the theory of Borel∗(κ) sets in the generalized Baire space Baire(κ)=κκ. In particular we look at the relation of this complexity class to other complexity classes which we denote by Borel(κ), Δ11(κ) and Σ11(κ) and the connections between Borel∗(κ) sets and the infinitely deep language Mκ+κ. In the end of the paper we will prove the consistency of Borel∗(κ)≠Σ11(κ).
Originalspråkengelska
Titel på gästpublikationJaakko Hintikka on Knowledge and Game-Theoretical Semantics
RedaktörerHans van Ditmarsch, Gabriel Sandu
Antal sidor18
Volym12
FörlagSpringer, Cham
Utgivningsdatum2018
Sidor395-412
ISBN (tryckt)978-3-319-62863-9
ISBN (elektroniskt)978-3-319-62864-6
DOI
StatusPublicerad - 2018
MoE-publikationstypA3 Del av bok eller annan forskningsbok

Publikationsserier

NamnOutstanding Contributions to Logic
Volym12
ISSN (tryckt)2211-2758
ISSN (elektroniskt)2211-2766

Vetenskapsgrenar

  • 111 Matematik

Citera det här

Hyttinen, T., & Kulikov, V. (2018). Borel* Sets in the Generalized Baire Space and Infinitary Languages. I H. van Ditmarsch, & G. Sandu (Red.), Jaakko Hintikka on Knowledge and Game-Theoretical Semantics (Vol. 12, s. 395-412 ). (Outstanding Contributions to Logic; Vol. 12). Springer, Cham. https://doi.org/10.1007/978-3-319-62864-6_16
Hyttinen, Tapani ; Kulikov, Vadim. / Borel* Sets in the Generalized Baire Space and Infinitary Languages. Jaakko Hintikka on Knowledge and Game-Theoretical Semantics. redaktör / Hans van Ditmarsch ; Gabriel Sandu. Vol. 12 Springer, Cham, 2018. s. 395-412 (Outstanding Contributions to Logic).
@inbook{a05fdb7258e04d42a67c34eb8fe5aa49,
title = "Borel* Sets in the Generalized Baire Space and Infinitary Languages",
abstract = "We start by giving a survey to the theory of Borel∗(κ) sets in the generalized Baire space Baire(κ)=κκ. In particular we look at the relation of this complexity class to other complexity classes which we denote by Borel(κ), Δ11(κ) and Σ11(κ) and the connections between Borel∗(κ) sets and the infinitely deep language Mκ+κ. In the end of the paper we will prove the consistency of Borel∗(κ)≠Σ11(κ).",
keywords = "111 Mathematics",
author = "Tapani Hyttinen and Vadim Kulikov",
year = "2018",
doi = "10.1007/978-3-319-62864-6_16",
language = "English",
isbn = "978-3-319-62863-9",
volume = "12",
series = "Outstanding Contributions to Logic",
publisher = "Springer, Cham",
pages = "395--412",
editor = "{van Ditmarsch}, Hans and Gabriel Sandu",
booktitle = "Jaakko Hintikka on Knowledge and Game-Theoretical Semantics",
address = "Switzerland",

}

Hyttinen, T & Kulikov, V 2018, Borel* Sets in the Generalized Baire Space and Infinitary Languages. i H van Ditmarsch & G Sandu (red), Jaakko Hintikka on Knowledge and Game-Theoretical Semantics. vol. 12, Outstanding Contributions to Logic, vol. 12, Springer, Cham, s. 395-412 . https://doi.org/10.1007/978-3-319-62864-6_16

Borel* Sets in the Generalized Baire Space and Infinitary Languages. / Hyttinen, Tapani ; Kulikov, Vadim.

Jaakko Hintikka on Knowledge and Game-Theoretical Semantics. red. / Hans van Ditmarsch; Gabriel Sandu. Vol. 12 Springer, Cham, 2018. s. 395-412 (Outstanding Contributions to Logic; Vol. 12).

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKapitelVetenskapligPeer review

TY - CHAP

T1 - Borel* Sets in the Generalized Baire Space and Infinitary Languages

AU - Hyttinen, Tapani

AU - Kulikov, Vadim

PY - 2018

Y1 - 2018

N2 - We start by giving a survey to the theory of Borel∗(κ) sets in the generalized Baire space Baire(κ)=κκ. In particular we look at the relation of this complexity class to other complexity classes which we denote by Borel(κ), Δ11(κ) and Σ11(κ) and the connections between Borel∗(κ) sets and the infinitely deep language Mκ+κ. In the end of the paper we will prove the consistency of Borel∗(κ)≠Σ11(κ).

AB - We start by giving a survey to the theory of Borel∗(κ) sets in the generalized Baire space Baire(κ)=κκ. In particular we look at the relation of this complexity class to other complexity classes which we denote by Borel(κ), Δ11(κ) and Σ11(κ) and the connections between Borel∗(κ) sets and the infinitely deep language Mκ+κ. In the end of the paper we will prove the consistency of Borel∗(κ)≠Σ11(κ).

KW - 111 Mathematics

U2 - 10.1007/978-3-319-62864-6_16

DO - 10.1007/978-3-319-62864-6_16

M3 - Chapter

SN - 978-3-319-62863-9

VL - 12

T3 - Outstanding Contributions to Logic

SP - 395

EP - 412

BT - Jaakko Hintikka on Knowledge and Game-Theoretical Semantics

A2 - van Ditmarsch, Hans

A2 - Sandu, Gabriel

PB - Springer, Cham

ER -

Hyttinen T, Kulikov V. Borel* Sets in the Generalized Baire Space and Infinitary Languages. I van Ditmarsch H, Sandu G, redaktörer, Jaakko Hintikka on Knowledge and Game-Theoretical Semantics. Vol. 12. Springer, Cham. 2018. s. 395-412 . (Outstanding Contributions to Logic). https://doi.org/10.1007/978-3-319-62864-6_16