Brain-mimetic Kernel: A Kernel Constructed from Human fMRI Signals Enabling a Brain-mimetic Visual Recognition Algorithm

Hiroki Kurashige, Hiroyuki Hoshino, Takashi Owaki, Kenichi Ueno, Topi Tanskanen, Kang Cheng, Hideyuki Câteau

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Although the present-day machine learning algorithm sometimes beats humans in visual recognition, we still find significant differences between the brain’s and the machine’s visual processing. Thus, it is not guaranteed that the information sampled by the machines is the one used in the human brain. To overcome this situation, we propose a novel method for extracting the building blocks of our brain information processing and utilize them in machine learning algorithms. The visual features used in our brain are identifiable by applying kernel canonical correlation analysis (KCCA) to paired data of visual stimuli (images) and evoked functional magnetic resonance imaging (fMRI) activity. A machine learning algorithm incorporating the identified visual features represented in the brain is expected to inherit the characteristics of brain information processing. In the proposed method, the features are incorporated into kernel-based algorithms as a positive-definite kernel. Applying the method to fMRI data measured from a participant seeing natural and object images, we constructed a support vector machine (SVM) working on the visual features presumably used in the brain. We showed that our model outperforms the SVM equipped with a conventional kernel, especially when the size of the training data is small. Moreover, we found that the performance of our model was consistent with physiological observations in the brain, suggesting its neurophysiological validity.

Originalspråkengelska
Titel på värdpublikationNeural Information Processing : 28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part III
RedaktörerTeddy Mantoro, Minho Lee, Media Anugerah Ayu, Kok Wai Wong, Achmad Nizar Hidayanto
Antal sidor13
UtgivningsortCham
FörlagSpringer Nature Switzerland AG
Utgivningsdatum2021
Sidor271-283
ISBN (tryckt)978-3-030-92237-5
ISBN (elektroniskt)978-3-030-92238-2
DOI
StatusPublicerad - 2021
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangInternational Conference on Neural Information Processing - Virtual, Online
Varaktighet: 8 dec. 202112 dec. 2021
Konferensnummer: 28
https://iconip2021.apnns.org/

Publikationsserier

NamnLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volym13110
ISSN (tryckt)0302-9743
ISSN (elektroniskt)1611-3349

Vetenskapsgrenar

  • 3124 Neurologi och psykiatri
  • 413 Veterinärvetenskap

Citera det här