Projekt per år
Sammanfattning
Building on the progress in Boolean satisfiability (SAT) solving over the last decades, maximum satisfiability (MaxSAT) has become a viable approach for solving NP-hard optimization problems. However, ensuring correctness of MaxSAT solvers has remained a considerable concern. For SAT, this is largely a solved problem thanks to the use of proof logging, meaning that solvers emit machine-verifiable proofs to certify correctness. However, for MaxSAT, proof logging solvers have started being developed only very recently. Moreover, these nascent efforts have only targeted the core solving process, ignoring the preprocessing phase where input problem instances can be substantially reformulated before being passed on to the solver proper. In this work, we demonstrate how pseudo-Boolean proof logging can be used to certify the correctness of a wide range of modern MaxSAT preprocessing techniques. By combining and extending the VeriPB and CakePB tools, we provide formally verified end-to-end proof checking that the input and preprocessed output MaxSAT problem instances have the same optimal value. An extensive evaluation on applied MaxSAT benchmarks shows that our approach is feasible in practice.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Automated Reasoning. IJCAR 2024. |
Redaktörer | Christoph Benzmüller, Marijn J. H. Heule, Renate A. Schmidt |
Antal sidor | 23 |
Förlag | Springer Science and Business Media Deutschland GmbH |
Utgivningsdatum | 1 juli 2024 |
Sidor | 396-418 |
ISBN (elektroniskt) | 978-3-031-63498-7 |
DOI | |
Status | Publicerad - 1 juli 2024 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | International Joint Conference on Automated Reasoning - Nancy, Frankrike Varaktighet: 3 juli 2024 → 6 juli 2024 Konferensnummer: 12 |
Publikationsserier
Namn | Lecture Notes in Computer Science |
---|---|
Volym | 14739 |
ISSN (tryckt) | 0302-9743 |
ISSN (elektroniskt) | 1611-3349 |
Bibliografisk information
Publisher Copyright:© The Author(s) 2024.
Vetenskapsgrenar
- 113 Data- och informationsvetenskap
Projekt
- 1 Aktiv
-
Next-generation Unsatisfiabillity-based Declarative Optimization
Järvisalo, M. (Projektledare), Conati, A. F. (deltagare), Eskelinen, V. (deltagare), Feyzbakhsh Rankooh, M. (deltagare), Jabs, C. J. (deltagare) & Lehtonen, T. (deltagare)
01/09/2023 → 31/08/2027
Projekt: Finlands Akademi: Akademiprojektsbidrag