Certifying Without Loss of Generality Reasoning in Solution-Improving Maximum Satisfiability

Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, Dieter Vandesande

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Proof logging has long been the established method to certify correctness of Boolean satisfiability (SAT) solvers, but has only recently been introduced for SAT-based optimization (MaxSAT). The focus of this paper is solution-improving search (SIS), in which a SAT solver is iteratively queried for increasingly better solutions until an optimal one is found. A challenging aspect of modern SIS solvers is that they make use of complex "without loss of generality"arguments that are quite involved to understand even at a human meta-level, let alone to express in a simple, machine-verifiable proof. In this work, we develop pseudo-Boolean proof logging methods for solution-improving MaxSAT solving, and use them to produce a certifying version of the state-of-the-art solver Pacose with VeriPB proofs. Our experimental evaluation demonstrates that this approach works in practice. We hope that this is yet another step towards general adoption of proof logging in MaxSAT solving.

Originalspråkengelska
Titel på värdpublikation30th International Conference on Principles and Practice of Constraint Programming, CP 2024
RedaktörerPaul Shaw
FörlagSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Utgivningsdatumaug. 2024
Artikelnummer4
ISBN (elektroniskt)978-3-95977-336-2
DOI
StatusPublicerad - aug. 2024
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangInternational Conference on Principles and Practice of Constraint Programming - Girona, Spanien
Varaktighet: 2 sep. 20246 sep. 2024
Konferensnummer: 30

Publikationsserier

NamnLeibniz International Proceedings in Informatics, LIPIcs
Volym307
ISSN (tryckt)1868-8969

Bibliografisk information

Publisher Copyright:
© Jeremias Berg, Bart Bogaerts, Jakob Nordström, Andy Oertel, Tobias Paxian, and Dieter Vandesande.

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap

Citera det här