Combined analysis of news and Twitter messages

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

While it is widely recognized that streams of social media messages contain valuable information, such as important trends in the users’ interest in consumer products and markets, uncovering such trends is problematic, due to the extreme volumes of messages in such media. In the case Twitter messages, following the interest in relation to all known products all the time is technically infeasible. IE narrows topics to search. In this paper, we present
experiments on using deeper NLP-based processing of product-related events mentioned in news streams to restrict the volume of tweets that need to be considered, to make the problem more tractable. Our goal is to analyze whether such a combined approach can help reveal correlations and how they may be captured.
Originalspråkengelska
Titel på värdpublikationProceedings of the Joint Workshop on NLP&LOD and SWAIE : SemanticWeb, Linked Open Data and Information Extraction
Antal sidor8
UtgivningsortHissar
Utgivningsdatum2013
Sidor41-48
ISBN (tryckt)978-954-452-025-0
StatusPublicerad - 2013
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangRANLP 2013 Workshop on Semantic Web and Information Extraction - Hissar, Bulgarien
Varaktighet: 13 sep. 201313 sep. 2013

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap

Citera det här