Complexity of Neural Network Training and ETR: Extensions with Effectively Continuous Functions

Teemu Hankala, Miika Hannula, Juha Kontinen, Jonni Virtema

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

We study the complexity of the problem of training neural networks defined via various activation functions. The training problem is known to be existsR-complete with respect to linear activation functions and the ReLU activation function. We consider the complexity of the problem with respect to the sigmoid activation function and other effectively continuous functions. We show that these training problems are polynomial-time many-one bireducible to the existential theory of the reals extended with the corresponding activation functions. In particular, we establish that the sigmoid activation function leads to the existential theory of the reals with the exponential function. It is thus open, and equivalent with the decidability of the existential theory of the reals with the exponential function, whether training neural networks using the sigmoid activation function is algorithmically solvable. In contrast, we obtain that the training problem is undecidable if sinusoidal activation functions are considered. Finally, we obtain general upper bounds for the complexity of the training problem in the form of low levels of the arithmetical hierarchy.
Originalspråkengelska
Titel på värdpublikationProceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence
RedaktörerMichael Wooldridge, Jennifer Dy, Sriraam Natarajan
Antal sidor8
Volym38(11)
FörlagAAAI Press
Utgivningsdatum2024
Sidor12278-12285
ISBN (tryckt)978-1-57735-887-9
DOI
StatusPublicerad - 2024
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangAnnual AAAI Conference on Artificial Intelligence - Vancouver, Kanada
Varaktighet: 20 feb. 202427 feb. 2024
Konferensnummer: 38
https://aaai.org/aaai-conference/

Publikationsserier

Namn
ISSN (tryckt)2159-5399
ISSN (elektroniskt)2374-3468

Bibliografisk information

Revised version of a manuscript sent for review in April 2023

Vetenskapsgrenar

  • 111 Matematik

Citera det här