Projekt per år
Sammanfattning
Deep neural networks (DNN) and linguistic rules are currently the opposite ends in the scale for NLP technologies. Until recently, it has not been known how to combine these technologies most effectively. Therefore, the technologies have been the object of almost disjoint research communities. In this presentation, I first recall that both Constraint Grammar (CG) and vanilla RNNs have finite-state properties. Then I relate CG to Google’s Transformer architecture (with two kinds of attention) and argue that there are significant similarities between these two seemingly unrelated architectures.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Proceedings of the NoDaLiDa 2019 Workshop on Constraint Grammar - Methods, Tools and Applications, 30 September 2019, Turku, Finland |
Redaktörer | Eckhard Bick, Trond Trosterud |
Antal sidor | 5 |
Utgivningsort | Linköping |
Förlag | Linköping University Electronic Press |
Utgivningsdatum | 3 dec. 2019 |
Sidor | 45-49 |
Artikelnummer | 9 |
ISBN (elektroniskt) | 978-91-7929-918-7 |
Status | Publicerad - 3 dec. 2019 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | NoDaLiDa 2019 workshop on Constraint Grammar - Methods, Tools, and Applications - University of Turku, Turku, Finland Varaktighet: 30 sep. 2019 → 30 sep. 2019 https://visl.sdu.dk/nodalida2019.html |
Publikationsserier
Namn | NEALT Proceedings Series |
---|---|
Förlag | Linköping University Electronic Press, Linköpings universitet |
Nummer | 33 |
Namn | Linköping Electronic Conference Proceedings |
---|---|
Förlag | Linköping University Electronic Press, Linköpings universitet |
Nummer | 168 |
ISSN (tryckt) | 1650-3686 |
ISSN (elektroniskt) | 1650-3740 |
Vetenskapsgrenar
- 113 Data- och informationsvetenskap
Projekt
- 1 Slutfört
-
ADEQSYNTAX: Käytettävä äärellistilainen malli adekvaatille kieliopilliselle kompleksisuudelle
01/09/2013 → 30/04/2019
Projekt: Forskningsprojekt