Sammanfattning
The Burrows-Wheeler transform (BWT) is a permutation whose applications are prevalent in data compression and text indexing. The bijective BWT (BBWT) is a bijective variant of it. Although it is known that the BWT can be constructed in linear time for integer alphabets by using a linear time suffix array construction algorithm, it was up to now only conjectured that the BBWT can also be constructed in linear time. We confirm this conjecture in the word RAM model by proposing a construction algorithm that is based on SAIS, improving the best known result of O(n lg n/ lg lg n) time to linear. Since we can reduce the problem of constructing the extended BWT to constructing the BBWT in linear time, we obtain a linear-time algorithm computing the extended BWT at the same time.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | 32nd Annual Symposium on Combinatorial Pattern Matching, CPM 2021 |
Redaktörer | Pawel Gawrychowski, Tatiana Starikovskaya |
Förlag | Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing |
Utgivningsdatum | 1 juli 2021 |
Artikelnummer | 7 |
ISBN (elektroniskt) | 978-3-95977-186-3 |
DOI | |
Status | Publicerad - 1 juli 2021 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | Annual Symposium on Combinatorial Pattern Matching - Wroclaw, Polen Varaktighet: 5 juli 2021 → 7 juli 2021 Konferensnummer: 32 |
Publikationsserier
Namn | Leibniz International Proceedings in Informatics, LIPIcs |
---|---|
Volym | 191 |
ISSN (tryckt) | 1868-8969 |
Bibliografisk information
Publisher Copyright:© Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, and Marcin Piatkowski.
Vetenskapsgrenar
- 113 Data- och informationsvetenskap