Projekt per år
Sammanfattning
Conventional context awareness and activity recognition models produce abstract outputs that offer limited insights into user behavior and situational context. These can be significantly enhanced by leveraging multi-sensor and multi-device data streams. However, the aggregation and modelling of context sensor data presents complex challenges that require advanced inference capabilities. We introduce ContextLLM, a context-driven solution powered by Large Language Models (LLMs), designed to transform sparse, abstract insights from various sensors and devices into a detailed, descriptive context. Through rigorous experiments using a well-established benchmark dataset for activity recognition, we demonstrate that ContextLLM can significantly enhance context understanding. However, our analysis also highlights how the quality and complexity of sensor data representations impact the LLM's ability to accurately deduce context. Building on these findings, we develop a research agenda that outlines key challenges, and conclude with a discussion on the limitations and practical considerations of LLM-based reasoning in context-aware applications.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | HotMobile '25 : Proceedings of the 26th International Workshop on Mobile Computing Systems and Applications |
Antal sidor | 6 |
Utgivningsort | New York |
Förlag | Association for Computing Machinery (ACM) |
Utgivningsdatum | 26 feb. 2025 |
Sidor | 13-18 |
ISBN (elektroniskt) | 979-8-4007-1403-0 |
DOI | |
Status | Publicerad - 26 feb. 2025 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | International Workshop on Mobile Computing Systems and Applications - La Quinta, Förenta Staterna (USA) Varaktighet: 26 feb. 2025 → 27 feb. 2025 Konferensnummer: 26 |
Vetenskapsgrenar
- 113 Data- och informationsvetenskap
Projekt
- 1 Aktiv
-
Foundations of Pervasive Sensing Systems
Nurmi, P. (Principal Investigator)
01/09/2021 → 31/08/2025
Projekt: Finlands Akademi: Akademiprojektsbidrag