Sammanfattning
An adverse drug event (ADE) is defined as an adverse reaction resulting from improper drug use, reported in various documents such as biomedical literature, drug reviews, and user posts on social media. The recent advances in natural language processing techniques have facilitated automated ADE detection from documents. However, the contextualized information and relations among text pieces are less explored. This paper investigates contextualized language models and heterogeneous graph representations. It builds a contextualized graph embedding model for adverse drug event detection. We employ different convolutional graph neural networks and pre-trained contextualized embeddings as the building blocks. Experimental results show that our methods can improve the performance by comparing recent ADE detection models, suggesting that a text graph can capture causal relationships and dependency between different entities in a document.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022 |
Redaktörer | Massih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, Grigorios Tsoumakas |
Antal sidor | 16 |
Volym | 13714 |
Utgivningsort | Cham |
Förlag | Springer |
Utgivningsdatum | 16 mars 2023 |
Sidor | 605-620 |
ISBN (tryckt) | 978-3-031-26389-7 |
ISBN (elektroniskt) | 978-3-031-26390-3 |
DOI | |
Status | Publicerad - 16 mars 2023 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases - Grenoble, Frankrike Varaktighet: 19 sep. 2022 → 23 sep. 2022 https://2022.ecmlpkdd.org/ |
Publikationsserier
Namn | Lecture Notes in Computer Science |
---|---|
Förlag | Springer |
Volym | 13714 |
ISSN (tryckt) | 0302-9743 |
ISSN (elektroniskt) | 1611-3349 |
Bibliografisk information
Publisher Copyright:© 2023, The Author(s).
Vetenskapsgrenar
- 6121 Språkvetenskaper
- 113 Data- och informationsvetenskap