Contextualized Graph Embeddings for Adverse Drug Event Detection

Ya Gao, Shaoxiong Ji, Tongxuan Zhang, Prayag Tiwari, Pekka Marttinen

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

An adverse drug event (ADE) is defined as an adverse reaction resulting from improper drug use, reported in various documents such as biomedical literature, drug reviews, and user posts on social media. The recent advances in natural language processing techniques have facilitated automated ADE detection from documents. However, the contextualized information and relations among text pieces are less explored. This paper investigates contextualized language models and heterogeneous graph representations. It builds a contextualized graph embedding model for adverse drug event detection. We employ different convolutional graph neural networks and pre-trained contextualized embeddings as the building blocks. Experimental results show that our methods can improve the performance by comparing recent ADE detection models, suggesting that a text graph can capture causal relationships and dependency between different entities in a document.

Originalspråkengelska
Titel på värdpublikationMachine Learning and Knowledge Discovery in Databases. ECML PKDD 2022
RedaktörerMassih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, Grigorios Tsoumakas
Antal sidor16
Volym13714
UtgivningsortCham
FörlagSpringer
Utgivningsdatum16 mars 2023
Sidor605-620
ISBN (tryckt)978-3-031-26389-7
ISBN (elektroniskt)978-3-031-26390-3
DOI
StatusPublicerad - 16 mars 2023
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases - Grenoble, Frankrike
Varaktighet: 19 sep. 202223 sep. 2022
https://2022.ecmlpkdd.org/

Publikationsserier

NamnLecture Notes in Computer Science
FörlagSpringer
Volym13714
ISSN (tryckt)0302-9743
ISSN (elektroniskt)1611-3349

Bibliografisk information

Publisher Copyright:
© 2023, The Author(s).

Vetenskapsgrenar

  • 6121 Språkvetenskaper
  • 113 Data- och informationsvetenskap

Citera det här