Copula-based exposure risk dynamic simulation of dual heavy metal mixed pollution accidents at the watershed scale.

Liu Ren, Liu Jing, Zhang Z., Zhang H. , Cai y., Yang Z., Sakari Kuikka

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

Sammanfattning

Most heavy metal exposure and pollution results from multiple industrial activities, including metal processing in refineries, and microelectronics. These issues pose a great threat to human health, ecological balance, and even societal stability. During 2012-2017, China, in particular, faced the challenge of 23 heavy metals accidents, six of which were extraordinarily serious accidents. Accidental environmental pollution is rarely caused by a single heavy metal, but rather by heavy metal mixtures. To address the need for a joint exposure risk assessment for heavy metal mixed pollution accidents at the watershed scale, a Copula-based exposure risk dynamic simulation model was proposed. A coupled hydrodynamic and accidental heavy metal exposure model is constructed for an hourly simulation of the exposure fate of heavy metals from each risk source once accidental leakage has occurred. The Copula analysis was introduced to calculate the dual heavy metal joint exposure probability in real time. This method was applied to an acute Cr6+-Hg2+ joint exposure risk assessment for 43 electroplating plants in nine sub-watersheds within the Dongjiang River downstream basin. The results indicated seven risk sources (i. e., S1, S4, H18, H23, H27-H28, and H34) that presented relatively high exposure risk to their surrounding subwatersheds. Spatially, the acute exposure risk level was highest in the tributary basin (sub-watershed XW) than in the mainstream (sub-watershed DW2) and the river network (sub-watershed RW) of the lower reaches of the Dongjiang River. This research highlights an effective probabilistic approach for performing a joint exposure risk analysis of heavy metal mixed pollution accidents at the watershed scale.

Originalspråkengelska
Artikelnummer111481
TidskriftJournal of Environmental Management
Volym277
Antal sidor11
ISSN0301-4797
DOI
StatusPublicerad - 1 jan 2021
MoE-publikationstypA1 Tidskriftsartikel-refererad

Vetenskapsgrenar

  • 1172 Miljövetenskap

Citera det här