Core Boosting in SAT-Based Multi-objective Optimization

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Maximum satisfiability (MaxSAT) constitutes today a successful approach to solving various real-world optimization problems through propositional encodings. Building on this success, approaches have recently been proposed for finding Pareto-optimal solutions to multi-objective MaxSAT (MO-MaxSAT) instances, i.e., propositional encodings under multiple objective functions. In this work, we propose core boosting as a reformulation/preprocessing technique for improving the runtime performance of MO-MaxSAT solvers. Core boosting in the multi-objective setting allows for shrinking the ranges of the multiple objectives at hand, which can be particularly beneficial for MO-MaxSAT relying on search that requires enforcing increasingly tighter objective bounds through propositional encodings. We show that core boosting is effective in improving the runtime performance of SAT-based MO-MaxSAT solvers typically with little overhead.

Originalspråkengelska
Titel på värdpublikationIntegration of Constraint Programming, Artificial Intelligence, and Operations Research - 21st International Conference, CPAIOR 2024, Proceedings
RedaktörerBistra Dilkina
Antal sidor19
UtgivningsortCham
FörlagSpringer
Utgivningsdatum25 maj 2024
Utgåva1
Sidor1-19
ISBN (tryckt)978-3-031-60601-4
ISBN (elektroniskt)978-3-031-60599-4
DOI
StatusPublicerad - 25 maj 2024
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangInternational Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research - Uppsala, Sverige
Varaktighet: 28 maj 202431 maj 2024
Konferensnummer: 21

Publikationsserier

NamnLecture Notes in Computer Science
Volym14743
ISSN (tryckt)0302-9743
ISSN (elektroniskt)1611-3349

Bibliografisk information

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap

Citera det här