Correcting Challenging Finnish Learner Texts With Claude, GPT-3.5 and GPT-4 Large Language Models

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

This paper studies the correction of challenging authentic Finnish learner texts at beginner level (CEFR A1). Three state-of-the-art large language models are compared, and it is shown that GPT-4 outperforms GPT-3.5, which in turn outperforms Claude v1 on this task. Additionally, ensemble models based on classifiers combining outputs of multiple single models are evaluated. The highest accuracy for an ensemble model is 84.3%, whereas the best single model, which is a GPT-4 model, produces sentences that are fully correct 83.3% of the time. In general, the different models perform on a continuum, where grammatical correctness, fluency and coherence go hand in hand.
Originalspråkengelska
Titel på värdpublikationProceedings of the Ninth Workshop on Noisy and User-generated Text (W-NUT 2024) : Collocated with EACL 2024
RedaktörerRob van der Goot, JinYeong Bak, Max Müller-Eberstein, Wei Xu, Alan Ritter, Tim Baldwin
Antal sidor10
UtgivningsortStroudsburg
FörlagAssociation for Computational Linguistics (ACL)
Utgivningsdatum22 mars 2024
Sidor1-10
ISBN (elektroniskt)979-8-89176-087-5
StatusPublicerad - 22 mars 2024
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangWorkshop on Noisy and User-generated Text - St. Julian’s, Malta
Varaktighet: 22 mars 202422 mars 2024
Konferensnummer: 9

Vetenskapsgrenar

  • 6121 Språkvetenskaper
  • 113 Data- och informationsvetenskap

Citera det här