Data-Driven Identification Constraints for DSGE Models

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

Sammanfattning

We propose imposing data-driven identification constraints to alleviate the multimodality problem arising in the estimation of poorly identified dynamic stochastic general equilibrium models under non-informative prior distributions. We also devise an iterative procedure based on the posterior density of the parameters for finding these constraints. An empirical application to the Smets and Wouters () model demonstrates the properties of the estimation method, and shows how the problem of multimodal posterior distributions caused by parameter redundancy is eliminated by identification constraints. Out-of-sample forecast comparisons as well as Bayes factors lend support to the constrained model.

Originalspråkengelska
TidskriftOxford Bulletin of Economics and Statistics
Volym80
Utgåva2
Sidor (från-till)236-258
Antal sidor23
ISSN0305-9049
DOI
StatusPublicerad - apr 2018
MoE-publikationstypA1 Tidskriftsartikel-refererad

Vetenskapsgrenar

  • 511 Nationalekonomi

Citera det här