Descriptive complexity of real computation and probabilistic independence logic

Miika Hannula, Juha Kontinen, Jan Van den Bussche, Jonni Virtema

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review


We introduce a novel variant of BSS machines called Separate Branching BSS machines (S-BSS in short) and develop a Fagin-type logical characterisation for languages decidable in non-deterministic polynomial time by S-BSS machines. We show that NP on S-BSS machines is strictly included in NP on BSS machines and that every NP language on S-BSS machines is a countable union of closed sets in the usual topology of R^n. Moreover, we establish that on Boolean inputs NP on S-BSS machines without real constants characterises a natural fragment of the complexity class existsR (a class of problems polynomial time reducible to the true existential theory of the reals) and hence lies between NP and PSPACE. Finally we apply our results to determine the data complexity of probabilistic independence logic.
Titel på gästpublikationProceedigs of the Thirty-Fifth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
Antal sidor14
FörlagIEEE Computer Society
Utgivningsdatumjul 2020
Sidor 550–563
ISBN (tryckt)978-1-4503-7104-9
StatusPublicerad - jul 2020
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangThirty-Fifth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS)
Varaktighet: 8 jul 202011 jul 2020


  • 111 Matematik

Citera det här