Document summarization based on word associations

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

In the age of big data, automatic methods for creating summaries of documents become increasingly important. In this paper we propose a novel, unsupervised method for (multi-)document summarization. In an unsupervised and language-independent fashion, this approach relies on the strength of word associations in the set of documents to be summarized. The summaries are generated by picking sentences which cover the most specific word associations of the document(s). We measure the performance on the DUC 2007 dataset. Our experiments indicate that the proposed method is the best-performing unsupervised summarization method in the state-of-the-art that makes no use of human-curated knowledge bases.
Originalspråkengelska
Titel på värdpublikationProceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval
Antal sidor4
UtgivningsortNew York
FörlagACM
Utgivningsdatumjuli 2014
Sidor1023-1026
ISBN (elektroniskt)978-1-4503-2257-7
DOI
StatusPublicerad - juli 2014
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangInternational ACM SIGIR Conference on Research and Development in Information Retrieval - Gold Coast, Australien
Varaktighet: 6 juli 201411 juli 2014
Konferensnummer: 37

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap

Citera det här