Sammanfattning
In the age of big data, automatic methods for creating summaries of documents become increasingly important. In this paper we propose a novel, unsupervised method for (multi-)document summarization. In an unsupervised and language-independent fashion, this approach relies on the strength of word associations in the set of documents to be summarized. The summaries are generated by picking sentences which cover the most specific word associations of the document(s). We measure the performance on the DUC 2007 dataset. Our experiments indicate that the proposed method is the best-performing unsupervised summarization method in the state-of-the-art that makes no use of human-curated knowledge bases.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval |
Antal sidor | 4 |
Utgivningsort | New York |
Förlag | ACM |
Utgivningsdatum | juli 2014 |
Sidor | 1023-1026 |
ISBN (elektroniskt) | 978-1-4503-2257-7 |
DOI | |
Status | Publicerad - juli 2014 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | International ACM SIGIR Conference on Research and Development in Information Retrieval - Gold Coast, Australien Varaktighet: 6 juli 2014 → 11 juli 2014 Konferensnummer: 37 |
Vetenskapsgrenar
- 113 Data- och informationsvetenskap