Dose-dependent effects of isoflurane on TrkB and GSK3β signaling: Importance of burst suppression pattern

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review


Objectives: Deep burst-suppressing isoflurane anesthesia regulates signaling pathways connected with antidepressant responses in the rodent brain: activation of TrkB neurotrophin receptor and inhibition of GSK3 beta kinase (glycogen synthase kinase 3 beta). The main objective of this study was to investigate whether EEG (electroencephalogram) burst suppression correlates with these intriguing molecular alterations induced by isoflurane.

Methods: Adult male mice pre-implanted with EEG recording electrodes were subjected to varying concentrations of isoflurane (1.0-2.0% ad 20 min) after which medial prefrontal cortex samples were collected for molecular analyses, and the data retrospectively correlated to EEG ( + /- burst suppression).

Results: Isoflurane dose-dependently increased phosphorylation of TrkB(Y816), CREBS133 (cAMP response element binding protein), GSK3 beta(S9) and p70S6k(T412/S424). The time spent in burst suppression mode varied considerably between individual animals. Notably, a subset of animals subjected to 1.0-1.5% isoflurane showed no burst suppression. While p-GSK3 beta(S9), p-CREBS133 and p-p70S6k(T412/S424) levels were increased in the samples obtained also from these animals, p-TrkB(Y816) levels remained unaltered.

Conclusions: Isoflurane dose-dependently regulates TrkB and GSK3 beta signaling and dosing associated with therapeutic outcomes in depressed patients produces most prominent effects.

TidskriftNeuroscience Letters
Sidor (från-till)29-33
Antal sidor5
StatusPublicerad - 16 feb. 2019
MoE-publikationstypA1 Tidskriftsartikel-refererad


  • 317 Farmaci
  • 3111 Biomedicinska vetenskaper
  • 3112 Neurovetenskaper

Citera det här