Dozens of Translation Directions or Millions of Shared Parameters? Comparing Two Types of Multilinguality in Modular Machine Translation

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

There are several ways of implementing multilingual NLP systems but little consensus as to whether different approaches exhibit similar effects. Are the trends that we observe when adding more languages the same as those we observe when sharing more parameters? We focus on encoder representations drawn from modular multilingual machine translation systems in an English-centric scenario, and study their quality from multiple aspects: how adequate they are for machine translation, how independent of the source language they are, and what semantic information they convey. Adding translation directions in English-centric scenarios does not conclusively lead to an increase in translation quality. Shared layers increase performance on zero-shot translation pairs and lead to more language-independent representations, but these improvements do not systematically align with more semantically accurate representations, from a monolingual standpoint.
Originalspråkengelska
Titel på värdpublikationProceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)
RedaktörerTanel Alumäe , Mark Fishel
Antal sidor10
UtgivningsortTartu
FörlagUniversity of Tartu Library
Utgivningsdatummaj 2023
Sidor238–247
ISBN (elektroniskt)978-9916-21-999-7
StatusPublicerad - maj 2023
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangNordic Conference on Computational Linguistics - Tórshavn, Färöarna
Varaktighet: 22 maj 202324 maj 2023
Konferensnummer: 24

Publikationsserier

NamnNEALT Proceedings Series Publisher name
FörlagUniversity of Tartu Library
Nummer52
ISSN (tryckt)1736-8197
ISSN (elektroniskt)1736-6305

Vetenskapsgrenar

  • 6121 Språkvetenskaper
  • 113 Data- och informationsvetenskap

Citera det här