DR-GPT: A large language model for medical report analysis of diabetic retinopathy patients

Joel Jaskari, Jaakko Sahlsten, Paula Summanen, Jukka Moilanen, Erika Lehtola, Marjo Aho, Elina Säpyskä, Kustaa Hietala, Kimmo Kaski

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

Sammanfattning

Diabetic retinopathy (DR) is a sight-threatening condition caused by diabetes. Screening programmes for DR include eye examinations, where the patient's fundi are photographed, and the findings, including DR severity, are recorded in the medical report. However, statistical analyses based on DR severity require structured labels that calls for laborious manual annotation process if the report format is unstructured. In this work, we propose a large language model DR-GPT for classification of the DR severity from unstructured medical reports. On a clinical set of medical reports, DR-GPT reaches 0.975 quadratic weighted Cohen's kappa using truncated Early Treatment Diabetic Retinopathy Study scale. When DR-GPT annotations for unlabeled data are paired with corresponding fundus images, the additional data improves image classifier performance with statistical significance. Our analysis shows that large language models can be applied for unstructured medical report databases to classify diabetic retinopathy with a variety of applications.

Originalspråkengelska
Artikelnummere0297706
TidskriftPLoS One
Volym19
Nummer10
Antal sidor14
ISSN1932-6203
DOI
StatusPublicerad - 11 okt. 2024
MoE-publikationstypA1 Tidskriftsartikel-refererad

Bibliografisk information

Publisher Copyright:
Copyright: © 2024 Jaskari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Vetenskapsgrenar

  • 3121 Allmänmedicin, inre medicin och annan klinisk medicin
  • 113 Data- och informationsvetenskap

Citera det här