Dynamic Sampling and Selective Masking for Communication-Efficient Federated Learning

Shaoxiong Ji, Wenqi Jiang, Anwar Walid, Xue Li

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

Sammanfattning

Federated learning (FL) is a novel machine learning setting that enables on-device intelligence via decentralized training and federated optimization. Deep neural networks rapid development facilitates the learning techniques for modeling complex problems and emerges into federated deep learning under the federated setting. However, the tremendous amount of model parameters burdens the communication network with a high load of transportation. This article introduces two approaches for improving communication efficiency by dynamic sampling and top-kk selective masking. The former controls the fraction of selected client models dynamically, while the latter selects parameters with top-kk largest values of difference for federated updating. Experiments on convolutional image classification and recurrent language modeling are conducted on three public datasets to show our proposed methods effectiveness.

Originalspråkengelska
TidskriftIEEE Intelligent Systems
Volym37
Nummer2
Sidor (från-till)27-34
Antal sidor8
ISSN1541-1672
DOI
StatusPublicerad - 2022
Externt publiceradJa
MoE-publikationstypA1 Tidskriftsartikel-refererad

Bibliografisk information

Publisher Copyright:
© 2001-2011 IEEE.

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap

Citera det här