Sammanfattning
Approximate nearest neighbor algorithms are used to speed up nearest neighbor search in a wide array of applications. However, current indexing methods feature several hyperparameters that need to be tuned to reach an acceptable accuracy–speed trade-off. A grid search in the parameter space is often impractically slow due to a time-consuming index-building procedure. Therefore, we propose an algorithm for automatically tuning the hyperparameters of indexing methods based on randomized space-partitioning trees. In particular, we present results using randomized k-d trees, random projection trees and randomized PCA trees. The tuning algorithm adds minimal overhead to the index-building process but is able to find the optimal hyperparameters accurately. We demonstrate that the algorithm is significantly faster than existing approaches, and that the indexing methods used are competitive with the state-of-the-art methods in query time while being faster to build.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Advances in Knowledge Discovery and Data Mining : 23rd Pacific-Asia Conference, PAKDD 2019, Macau, China, April 14-17, 2019, Proceedings, Part II |
Antal sidor | 13 |
Utgivningsort | Cham |
Förlag | Springer |
Utgivningsdatum | 17 apr. 2019 |
Sidor | 590-602 |
ISBN (tryckt) | 978-3-030-16144-6 |
ISBN (elektroniskt) | 978-3-030-16145-3 |
DOI | |
Status | Publicerad - 17 apr. 2019 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | Pacific-Asia Conference on Knowledge Discovery and Data Mining 2019 - Parisian Macao, Macao, Kina Varaktighet: 14 apr. 2019 → 17 apr. 2019 Konferensnummer: 23 http://pakdd2019.medmeeting.org/en |
Publikationsserier
Namn | Lecture Notes in Artificial Intelligence |
---|---|
Förlag | Springer |
Volym | 11440 |
ISSN (tryckt) | 0302-9743 |
ISSN (elektroniskt) | 1611-3349 |
Vetenskapsgrenar
- 113 Data- och informationsvetenskap