Sammanfattning
ELOQUENT is a set of shared tasks for evaluating the quality and usefulness of generative language models. ELOQUENT aims to apply high-level quality criteria, grounded in experiences from deploying models in real-life tasks, and to formulate tests for those criteria, preferably implemented to require minimal human assessment effort and in a multilingual setting. One of the tasks for the first year of ELOQUENT was the Topical quiz, in which language models are probed for topical competence. This first year of experimentation has shown - as expected - that using self-assessment with models judging models is feasible, but not entirely straight-forward, and that a judicious comparison with human assessment and application context is necessary to be able to trust self-assessed quality judgments.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Working Notes of the Conference and Labs of the Evaluation Forum (CLEF 2024) |
Redaktörer | Guglielmo Faggioli, Nicola Ferro, Petra Galuščáková, Alba García Seco de Herrera |
Antal sidor | 4 |
Utgivningsort | Aachen |
Förlag | CEUR-WS.org |
Utgivningsdatum | 2024 |
Sidor | 687-690 |
Status | Publicerad - 2024 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | Conference and Labs of the Evaluation Forum - Grenoble, Frankrike Varaktighet: 9 sep. 2024 → 12 sep. 2024 Konferensnummer: 15 |
Publikationsserier
Namn | CEUR Workshop Proceedings |
---|---|
Förlag | CEUR-WS.org |
Volym | 3740 |
ISSN (tryckt) | 1613-0073 |
Bibliografisk information
Publisher Copyright:© 2024 Copyright for this paper by its authors.
Vetenskapsgrenar
- 6121 Språkvetenskaper
- 113 Data- och informationsvetenskap