Sammanfattning
ELOQUENT is a set of shared tasks for evaluating the quality and usefulness of generative language models. ELOQUENT aims to bring together some high-level quality criteria, grounded in experiences from deploying models in real-life tasks, and to formulate tests for those criteria, preferably implemented to require minimal human assessment effort and in a multilingual setting. The selected tasks for this first year of ELOQUENT are (1) probing a language model for topical competence; (2) assessing the ability of models to generate and detect hallucinations; (3) assessing the robustness of a model output given variation in the input prompts; and (4) establishing the possibility to distinguish human-generated text from machine-generated text.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Advances in Information Retrieval. ECIR 2024 |
Redaktörer | N. Goharian, et al. |
Utgivningsort | Cham |
Förlag | Springer |
Utgivningsdatum | 23 mars 2024 |
Sidor | 459–465 |
ISBN (tryckt) | 978-3-031-56068-2 |
ISBN (elektroniskt) | 978-3-031-56069-9 |
DOI | |
Status | Publicerad - 23 mars 2024 |
Externt publicerad | Ja |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | European Conference on Information Retrieval: ECIR - Glasgow, Storbritannien Varaktighet: 24 mars 2024 → 28 mars 2024 Konferensnummer: 46 |
Publikationsserier
Namn | Lecture Notes in Computer Science |
---|---|
Förlag | Springer |
Volym | 14612 |
ISSN (tryckt) | 0302-9743 |
ISSN (elektroniskt) | 1611-3349 |
Vetenskapsgrenar
- 6121 Språkvetenskaper
- 113 Data- och informationsvetenskap