ELOQUENT CLEF Shared Tasks for Evaluation of Generative Language Model Quality

Jussi Jerker Karlgren, Luise Dürlich, Evangelia Gogoulou, Liane Guillou, Joakim Nivre, Magnus Sahlgren, Aarne Talman

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

ELOQUENT is a set of shared tasks for evaluating the quality and usefulness of generative language models. ELOQUENT aims to bring together some high-level quality criteria, grounded in experiences from deploying models in real-life tasks, and to formulate tests for those criteria, preferably implemented to require minimal human assessment effort and in a multilingual setting. The selected tasks for this first year of ELOQUENT are (1) probing a language model for topical competence; (2) assessing the ability of models to generate and detect hallucinations; (3) assessing the robustness of a model output given variation in the input prompts; and (4) establishing the possibility to distinguish human-generated text from machine-generated text.
Originalspråkengelska
Titel på värdpublikationAdvances in Information Retrieval. ECIR 2024
RedaktörerN. Goharian, et al.
UtgivningsortCham
FörlagSpringer
Utgivningsdatum23 mars 2024
Sidor459–465
ISBN (tryckt)978-3-031-56068-2
ISBN (elektroniskt)978-3-031-56069-9
DOI
StatusPublicerad - 23 mars 2024
Externt publiceradJa
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangEuropean Conference on Information Retrieval: ECIR - Glasgow, Storbritannien
Varaktighet: 24 mars 202428 mars 2024
Konferensnummer: 46

Publikationsserier

Namn Lecture Notes in Computer Science
FörlagSpringer
Volym14612
ISSN (tryckt)0302-9743
ISSN (elektroniskt)1611-3349

Vetenskapsgrenar

  • 6121 Språkvetenskaper
  • 113 Data- och informationsvetenskap

Citera det här