Enhancing PFI Prediction with GDS-MIL: A Graph-Based Dual Stream MIL Approach

Gianpaolo Bontempo, Nicola Bartolini, Marta Lovino, Federico Bolelli, Anni Virtanen, Elisa Ficarra

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Whole-Slide Images (WSI) are emerging as a promising resource for studying biological tissues, demonstrating a great potential in aiding cancer diagnosis and improving patient treatment. However, the manual pixel-level annotation of WSIs is extremely time-consuming and practically unfeasible in real-world scenarios. Multi-Instance Learning (MIL) have gained attention as a weakly supervised approach able to address lack of annotation tasks. MIL models aggregate patches (e.g., cropping of a WSI) into bag-level representations (e.g., WSI label), but neglect spatial information of the WSIs, crucial for histological analysis. In the High-Grade Serous Ovarian Cancer (HGSOC) context, spatial information is essential to predict a prognosis indicator (the Platinum-Free Interval, PFI) from WSIs. Such a prediction would bring highly valuable insights both for patient treatment and prognosis of chemotherapy resistance. Indeed, NeoAdjuvant ChemoTherapy (NACT) induces changes in tumor tissue morphology and composition, making the prediction of PFI from WSIs extremely challenging. In this paper, we propose GDS-MIL, a method that integrates a state-of-the-art MIL model with a Graph ATtention layer (GAT in short) to inject a local context into each instance before MIL aggregation. Our approach achieves a significant improvement in accuracy on the “Ome18” PFI dataset. In summary, this paper presents a novel solution for enhancing PFI prediction in HGSOC, with the potential of significantly improving treatment decisions and patient outcomes.

Originalspråkengelska
Titel på värdpublikationImage Analysis and Processing – ICIAP 2023 - 22nd International Conference, ICIAP 2023, Proceedings
RedaktörerGian Luca Foresti, Andrea Fusiello, Edwin Hancock
Antal sidor13
FörlagSpringer Science and Business Media Deutschland GmbH
Utgivningsdatum2023
Sidor550-562
ISBN (tryckt)978-3-031-43147-0
DOI
StatusPublicerad - 2023
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangInternational Conference on Image Analysis and Processing - Udine, Italien
Varaktighet: 11 sep. 202315 sep. 2023
Konferensnummer: 22

Publikationsserier

NamnLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volym14233 LNCS
ISSN (tryckt)0302-9743
ISSN (elektroniskt)1611-3349

Bibliografisk information

Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap

Citera det här