Sammanfattning
Photocatalysis carries the potential to utilize freely available natural light as a renewable and sustainable energy source. These semiconducting materials can excite the electrons from valance band to conduction band, producing high energy electron-hole pairs involved in redox reactions under light irradiation. The semiconducting materials must possess a large specific surface area, suitable band gap, and high redox potential for photocatalytic applications. In this chapter, we summarize the characteristic properties of metal oxides, metal phosphides, carbonaceous, and other nanomaterials, which make them suitable material for photocatalysis. Furthermore, the basic mechanism of photocatalysis and charge transport mechanism in type II, Z-scheme, and most trending S-scheme heterojunctions, along with various analytical techniques employed to confirm the type of heterostructure formed, are also discussed briefly. Finally, the potential application of different nanomaterials with improved photodegradation efficiency for different pollutants is discussed.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Photocatalysts and Electrocatalysts in Water Remediation : From Fundamentals to Full Scale Applications |
Redaktörer | Prasenjit Bhunia, Kingshuk Dutta, S. Vadivel |
Antal sidor | 37 |
Förlag | Wiley Blackwell |
Utgivningsdatum | 2023 |
Sidor | 1-37 |
ISBN (tryckt) | 978-1-119-85531-6 |
ISBN (elektroniskt) | 978-1-119-85533-0, 978-1-119-85534-7 |
DOI | |
Status | Publicerad - 2023 |
MoE-publikationstyp | A3 Del av bok eller annan forskningsbok |
Bibliografisk information
Publisher Copyright:© 2023 John Wiley & Sons Ltd.
Vetenskapsgrenar
- 116 Kemi