Sammanfattning
Named entity recognition (NER) is a knowledge-intensive information extraction task that is used for recognizing textual mentions of entities that belong to a predefined set of categories, such as locations, organizations and time expressions. NER is a challenging, difficult, yet essential preprocessing technology for many natural language processing applications, and particularly crucial for language understanding. NER has been actively explored in academia and in industry especially during the last years due to the advent of social media data. This paper describes the conversion, modeling and adaptation of a Swedish NER system from a hybrid environment, with integrated functionality from various processing components, to the Helsinki Finite-State Transducer Technology (HFST) platform. This new HFST-based NER (HFST-SweNER) is a full-fledged open source implementation that supports a variety of generic named entity types and consists of multiple, reusable resource layers, e.g., various n-gram-based named entity lists (gazetteers).
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14) |
Redaktörer | Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, Stelios Piperidis |
Antal sidor | 7 |
Utgivningsort | Reykjavik, Iceland |
Förlag | European Language Resources Association (ELRA) |
Utgivningsdatum | 26 maj 2014 |
Artikelnummer | #391 |
ISBN (tryckt) | 978-2-9517408-8-4 |
ISBN (elektroniskt) | 978-2-9517408-8-4 |
Status | Publicerad - 26 maj 2014 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | Language and Resource Evaluation Conference - Reykjavik, Island Varaktighet: 26 maj 2014 → 31 maj 2014 Konferensnummer: 9 |
Vetenskapsgrenar
- 113 Data- och informationsvetenskap
- 6121 Språkvetenskaper