HFST-SweNER – A New NER Resource for Swedish

Dimitrios Kokkinakis, Jyrki Niemi, Sam Hardwick, Krister Linden, Lars Borin

    Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

    Sammanfattning

    Named entity recognition (NER) is a knowledge-intensive information extraction task that is used for recognizing textual mentions of entities that belong to a predefined set of categories, such as locations, organizations and time expressions. NER is a challenging, difficult, yet essential preprocessing technology for many natural language processing applications, and particularly crucial for language understanding. NER has been actively explored in academia and in industry especially during the last years due to the advent of social media data. This paper describes the conversion, modeling and adaptation of a Swedish NER system from a hybrid environment, with integrated functionality from various processing components, to the Helsinki Finite-State Transducer Technology (HFST) platform. This new HFST-based NER (HFST-SweNER) is a full-fledged open source implementation that supports a variety of generic named entity types and consists of multiple, reusable resource layers, e.g., various n-gram-based named entity lists (gazetteers).
    Originalspråkengelska
    Titel på värdpublikationProceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)
    RedaktörerNicoletta Calzolari, Khalid Choukri, Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, Stelios Piperidis
    Antal sidor7
    UtgivningsortReykjavik, Iceland
    FörlagEuropean Language Resources Association (ELRA)
    Utgivningsdatum26 maj 2014
    Artikelnummer #391
    ISBN (tryckt)978-2-9517408-8-4
    ISBN (elektroniskt)978-2-9517408-8-4
    StatusPublicerad - 26 maj 2014
    MoE-publikationstypA4 Artikel i en konferenspublikation
    EvenemangLanguage and Resource Evaluation Conference - Reykjavik, Island
    Varaktighet: 26 maj 201431 maj 2014
    Konferensnummer: 9

    Vetenskapsgrenar

    • 113 Data- och informationsvetenskap
    • 6121 Språkvetenskaper

    Citera det här