Illuminating a Phytochrome Paradigm – a Light-Activated Phosphatase in Two-Component Signaling Uncovered

Elina Kaarina Multamäki, Rahul Nanekar, Dmitry Morozov, Topias Lievonen, David Golonka, Weixiao Yuan Wahlgren, Brigitte Stucki-Buchli, Jari Rossi, Vesa P. Hytönen, Sebastian Westenhoff, Janne A. Ihalainen, Andreas Möglich, Heikki Takala

Forskningsoutput: TidskriftsbidragArtikelVetenskaplig

Sammanfattning

Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (AgP1). Whereas AgP1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While AgP1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes inform the use of light-controllable histidine kinases and phosphatases for optogenetics.
Originalspråkengelska
TidskriftbioRxiv : the preprint server for biology
Volym June 27, 2020
DOI
StatusPublicerad - 27 jun 2020
MoE-publikationstypB1 Artikel i en vetenskaplig tidskrift

Citera det här