Impact of anthropogenic and biogenic sources on the seasonal variation in the molecular composition of urban organic aerosols: a field and laboratory study using ultra-high-resolution mass spectrometry

Kaspar Dällenbach, Ivan Kourtchev, Alexander L. Vogel, Emily A. Bruns, Jianhui Jiang, Tuukka Petäjä, Jean-Luc Jaffrezo, Sebnem Aksoyoglu, Markus Kalberer, Urs Baltensperger, Imad El Haddad, Andre S. H. Prevot

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

Sammanfattning

This study presents the molecular composition of organic aerosol (OA) using ultra-high-resolution mass spectrometry (Orbitrap) at an urban site in Central Europe (Zurich, Switzerland). Specific source spectra were also analysed, including samples representative of woodburning emissions from Alpine valleys during wood-burning pollution episodes and smog chamber investigations of woodsmoke, as well as samples from Hyytiala, which were strongly influenced by biogenic secondary organic aerosol. While samples collected during winter in Alpine valleys have a molecular composition remarkably similar to fresh laboratory wood-burning emissions, winter samples from Zurich are influenced by more aged wood-burning emissions. In addition, other organic aerosol emissions or formation pathways seem to be important at the latter location in winter. Samples from Zurich during summer are similar to those collected in Hyytiala and are predominantly impacted by oxygenated compounds with an H/C ratio of 1.5, indicating the importance of biogenic precursors for secondary organic aerosol (SOA) formation at this location (summertime Zurich - carbon number 7.6, O : C 0.7; Hyytiala - carbon number 10.5, O : C 0.57). We could explain the strong seasonality of the molecular composition at a typical European site by primary and aged wood-burning emissions and biogenic secondary organic aerosol formation during winter and summer, respectively. Results presented here likely explain the rather constant seasonal predominance of non-fossil organic carbon at European locations.
Originalspråkengelska
TidskriftAtmospheric Chemistry and Physics
Volym19
Nummer9
Sidor (från-till)5973-5991
Antal sidor19
ISSN1680-7316
DOI
StatusPublicerad - 7 maj 2019
MoE-publikationstypA1 Tidskriftsartikel-refererad

Vetenskapsgrenar

  • 1172 Miljövetenskap
  • 116 Kemi

Citera det här