TY - GEN
T1 - Integration of atomic layer deposited nanolaminates on silicon waveguides (Conference Presentation)
AU - Autere, Anton
AU - Karvonen, Lasse
AU - Säynätjoki, Antti
AU - Roussey, Matthieu
AU - Roenn, John
AU - Färm, Elina
AU - Kemell, Marianna
AU - Tu, Xiaoguang
AU - Liow, Tsung-Yang
AU - Lo, Patrick
AU - Ritala, Mikko
AU - Leskelä, Markku
AU - Lipsanen, Harri
AU - Honkanen, Seppo
AU - Sun, Zhipei
PY - 2016
Y1 - 2016
N2 - Despite all the eminent advantages of silicon photonics, other materials need to be integrated to fulfill the functions that are difficult to realize with silicon alone. This is because silicon has a low light emission efficiency and a low electro-optic coefficient, limiting the use of silicon as a material for light sources and modulators. A strong two-photon absorption (TPA) at high intensities also limits the use of silicon in applications exploiting nonlinear effects. In addition, signal amplification is needed to compensate the insertion and propagation losses in silicon nanowaveguides. To address these issues we have demonstrated the integration of atomic layer deposited nanolaminates on silicon waveguides. Firstly we demonstrate slot waveguide ring resonators patterned on a silicon-on-insulator (SOI) wafer coated with an atomic layer deposited organic/inorganic nanolaminate structure, which consists of alternating layers of tantalum pentoxide (Ta2O5) and polyimide (PI) [1]. These materials were selected since the ALD process for depositing Ta2O5/PI nanolaminate films is already available [2] and both materials exhibit high third order nonlinearities [3-4]. In our nanolaminate ring resonators, the optical power is not only confined in the narrow central air slot but also in several parallel sub-10 nm wide vertical polyimide slots. This indicates that the mode profiles in the silicon slot waveguide can be accurately tuned by the atomic layer deposition (ALD) method. Our results show that ALD of organic and inorganic materials can be combined with conventional silicon waveguide fabrication techniques to create slot waveguide ring resonators with varying mode profiles. Secondly we demonstrate the integration of atomic layer deposited erbium-doped aluminum oxide (Al2O3) nanolaminates on silicon waveguides. This method provides an efficient way for controlling the concentration and distribution of erbium ions. We have applied this method on silicon strip and slot waveguides and show signal enhancement. Our results show that atomic layer deposited nanolaminates can potentially open new possibilities for various photonic applications, such as silicon photonic devices for light emission and amplification, optical sensing and all-optical signal processing. References [1] A. Autere, L. Karvonen, A. Säynätjoki, M. Roussey, E. Färm, M. Kemell, X. Tu, T.Y. Liow, G.Q. Lo, M. Ritala, M. Leskelä, S. Honkanen, H. Lipsanen, and Z. Sun, "Slot waveguide ring resonators coated by an atomic layer deposited organic/inorganic nanolaminate," Opt. Express 23, 26940-26951 (2015) [2] L. D. Salmi, E. Puukilainen, M. Vehkamäki, M. Heikkilä, and M. Ritala, "Atomic layer deposition of Ta2O5/polyimide nanolaminates," Chem. Vap. Deposition 15, 221-226 (2009). [3] S. Morino, T. Yamashita, K. Horie, T. Wada, and H. Sasabe, "Third-order nonlinear optical properties of aromatic polyisoimides," React. Funct. Polym. 44, 183-188 (2000). [4] C.-Y. Tai, J. Wilkinson, N. Perney, M. Netti, F. Cattaneo, C. Finlayson, and J. Baumberg, "Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation," Opt. Express 12, 5110-5116 (2004). © 2016 SPIE.
AB - Despite all the eminent advantages of silicon photonics, other materials need to be integrated to fulfill the functions that are difficult to realize with silicon alone. This is because silicon has a low light emission efficiency and a low electro-optic coefficient, limiting the use of silicon as a material for light sources and modulators. A strong two-photon absorption (TPA) at high intensities also limits the use of silicon in applications exploiting nonlinear effects. In addition, signal amplification is needed to compensate the insertion and propagation losses in silicon nanowaveguides. To address these issues we have demonstrated the integration of atomic layer deposited nanolaminates on silicon waveguides. Firstly we demonstrate slot waveguide ring resonators patterned on a silicon-on-insulator (SOI) wafer coated with an atomic layer deposited organic/inorganic nanolaminate structure, which consists of alternating layers of tantalum pentoxide (Ta2O5) and polyimide (PI) [1]. These materials were selected since the ALD process for depositing Ta2O5/PI nanolaminate films is already available [2] and both materials exhibit high third order nonlinearities [3-4]. In our nanolaminate ring resonators, the optical power is not only confined in the narrow central air slot but also in several parallel sub-10 nm wide vertical polyimide slots. This indicates that the mode profiles in the silicon slot waveguide can be accurately tuned by the atomic layer deposition (ALD) method. Our results show that ALD of organic and inorganic materials can be combined with conventional silicon waveguide fabrication techniques to create slot waveguide ring resonators with varying mode profiles. Secondly we demonstrate the integration of atomic layer deposited erbium-doped aluminum oxide (Al2O3) nanolaminates on silicon waveguides. This method provides an efficient way for controlling the concentration and distribution of erbium ions. We have applied this method on silicon strip and slot waveguides and show signal enhancement. Our results show that atomic layer deposited nanolaminates can potentially open new possibilities for various photonic applications, such as silicon photonic devices for light emission and amplification, optical sensing and all-optical signal processing. References [1] A. Autere, L. Karvonen, A. Säynätjoki, M. Roussey, E. Färm, M. Kemell, X. Tu, T.Y. Liow, G.Q. Lo, M. Ritala, M. Leskelä, S. Honkanen, H. Lipsanen, and Z. Sun, "Slot waveguide ring resonators coated by an atomic layer deposited organic/inorganic nanolaminate," Opt. Express 23, 26940-26951 (2015) [2] L. D. Salmi, E. Puukilainen, M. Vehkamäki, M. Heikkilä, and M. Ritala, "Atomic layer deposition of Ta2O5/polyimide nanolaminates," Chem. Vap. Deposition 15, 221-226 (2009). [3] S. Morino, T. Yamashita, K. Horie, T. Wada, and H. Sasabe, "Third-order nonlinear optical properties of aromatic polyisoimides," React. Funct. Polym. 44, 183-188 (2000). [4] C.-Y. Tai, J. Wilkinson, N. Perney, M. Netti, F. Cattaneo, C. Finlayson, and J. Baumberg, "Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation," Opt. Express 12, 5110-5116 (2004). © 2016 SPIE.
KW - Aluminum coatings
KW - Amplification
KW - Atoms
KW - Crystal atomic structure
KW - Deposition
KW - Erbium
KW - Films
KW - Fluorine
KW - Integrated circuits
KW - Integrated optics
KW - Integration
KW - Light emission
KW - Light sources
KW - Luminescence of organic solids
KW - Nonlinear optics
KW - Optical properties
KW - Optical resonators
KW - Optical signal processing
KW - Optical waveguides
KW - Phase modulation
KW - Photonic devices
KW - Photonic integration technology
KW - Photonics
KW - Polyimides
KW - Reconfigurable hardware
KW - Refractive index
KW - Resonators
KW - Self phase modulation
KW - Signal processing
KW - Silicon on insulator technology
KW - Silicon wafers
KW - Tantalum compounds
KW - Tantalum oxides
KW - Two photon processes
KW - Waveguides, All-optical signal processing
KW - Electro optic coefficient
KW - Nanolaminate structures
KW - Nonlinear refractive index
KW - Silicon on insulator wafers
KW - Silicon photonic devices
KW - Third order nonlinear optical properties
KW - Third-order non-linearity, Atomic layer deposition
KW - 116 Chemical sciences
U2 - 10.1117/12.2227097
DO - 10.1117/12.2227097
M3 - Conference contribution
SN - 9781510601369
VL - 9891
BT - Silicon Photonics and Photonic Integrated Circuits V, proceedings
A2 - Pavesi, L.
A2 - Vivien, L.
A2 - Pelli, S.
PB - SPIE
CY - Brussels
T2 - SPIE Photonics Europe
Y2 - 3 April 2016 through 7 April 2016
ER -