Investigating the Utility of Surprisal from Large Language Models for Speech Synthesis Prosody

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragProfessionell

Sammanfattning

This paper investigates the use of word surprisal, a measure of the predictability of a word in a given context, as a feature to aid speech synthesis prosody. We explore how word surprisal extracted from large language models (LLMs) correlates with word prominence, a signal-based measure of the salience of a word in a given discourse. We also examine how context length and LLM size affect the results, and how a speech synthesizer conditioned with surprisal values compares with a baseline system. To evaluate these factors, we conducted experiments using a large corpus of English text and LLMs of varying sizes. Our results show that word surprisal and word prominence are moderately correlated, suggesting that they capture related but distinct aspects of language use. We find that length of context and size of the LLM impact the correlations, but not in the direction anticipated, with longer contexts and larger LLMs generally underpredicting prominent words in a nearly linear manner. We demonstrate that, in line with these findings, a speech synthesizer conditioned with surprisal values provides a minimal improvement over the baseline with the results suggesting a limited effect of using surprisal values for eliciting appropriate prominence patterns.
Originalspråkengelska
Titel på värdpublikationProceedings of the 12th ISCA Speech Synthesis Workshop (SSW)
RedaktörerThomas Hueber, Damien Lolive, Nicolas Obin, Olivier Perrotin
Antal sidor7
UtgivningsortBaixas
FörlagISCA - International Speech Communication Association
Utgivningsdatumaug. 2023
Sidor127-133
DOI
StatusPublicerad - aug. 2023
MoE-publikationstypD3 Professionella konferenshandlingar
EvenemangSpeech Synthesis Workshop - MaCI (« Maison de la Création et de l’Innovation »), Grenoble, Frankrike
Varaktighet: 26 aug. 202328 aug. 2023
Konferensnummer: 12
https://ssw2023.org/

Vetenskapsgrenar

  • 213 El-, automations- och telekommunikationsteknik, elektronik
  • 113 Data- och informationsvetenskap
  • 6121 Språkvetenskaper

Citera det här