Sammanfattning
Whether embedding spaces use all their dimensions equally, i.e., whether they are isotropic, has been a recent subject of discussion. Evidence has been accrued both for and against enforcing isotropy in embedding spaces. In the present paper, we stress that isotropy imposes requirements on the embedding space that are not compatible with the presence of clusters---which also negatively impacts linear classification objectives. We demonstrate this fact both empirically and mathematically and use it to shed light on previous results from the literature.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) |
Redaktörer | Lun-Wei Ku, Andre Martins, Vivek Srikumar |
Antal sidor | 10 |
Utgivningsort | Kerrville |
Förlag | The Association for Computational Linguistics |
Utgivningsdatum | 1 aug. 2024 |
Sidor | 75-84 |
ISBN (elektroniskt) | 979-8-89176-095-0 |
Status | Publicerad - 1 aug. 2024 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | Annual Meeting of the Association for Computational Linguistics - Bangkok, Thailand Varaktighet: 11 aug. 2024 → 16 aug. 2024 Konferensnummer: 62 |
Vetenskapsgrenar
- 6121 Språkvetenskaper
- 113 Data- och informationsvetenskap