Lagrangian manifold Monte Carlo on Monge patches

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

The efficiency of Markov Chain Monte Carlo (MCMC) depends on how the underlying geometry of the problem is taken into account. For distributions with strongly varying curvature, Riemannian metrics help in efficient exploration of the target distribution. Unfortunately, they have significant computational overhead due to e.g. repeated inversion of the metric tensor, and current geometric MCMC methods using the Fisher information matrix to induce the manifold are in practice slow. We propose a new alternative Riemannian metric for MCMC, by embedding the target distribution into a higher-dimensional Euclidean space as a Monge patch and using the induced metric determined by direct geometric reasoning. Our metric only requires first-order gradient information and has fast inverse and determinants, and allows reducing the computational complexity of individual iterations from cubic to quadratic in the problem dimensionality. We demonstrate how Lagrangian Monte Carlo in this metric efficiently explores the target distributions.
Originalspråkengelska
Titel på värdpublikationProceedings of The 25th International Conference on Artificial Intelligence and Statistics
RedaktörerGustau Camps-Vall, Francisco J. R. Ruiz, Isabel Valera
Antal sidor18
FörlagJournal of Machine Learning Research
Utgivningsdatum29 jan. 2022
Sidor4764-4781
StatusPublicerad - 29 jan. 2022
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangInternational Conference on Artificial Intelligence and Statistic -
Varaktighet: 28 mars 202230 mars 2022
Konferensnummer: 25

Publikationsserier

NamnProceedings of Machine Learning Research, PMLR
FörlagJournal of Machine Learning Research
Volym151
ISSN (elektroniskt)2640-3498

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap

Citera det här