Projekt per år
Sammanfattning
We give an update on the Found in Translation (FoTran) project, focusing on the study of emerging language-agnostic representations from neural machine translation (NMT). We describe our attention-bridge model, a modular NMT model which connects language-specific components through a shared network layer. Our latest implementation supports distributed training over many nodes and GPUs in order to substantially scale up the number of languages that can be included in a modern neural translation architecture.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Proceedings of the 23rd Annual Conference of the European Association for Machine Translation |
Redaktörer | Helana Moniz, Lieve Macken, Andrew Rufener, et al. |
Antal sidor | 2 |
Utgivningsort | Geneva |
Förlag | European Association for Machine Translation |
Utgivningsdatum | 2022 |
Sidor | 311-312 |
ISBN (elektroniskt) | 9789464597622 |
Status | Publicerad - 2022 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | Annual Conference of the European Association for Machine Translation - Ghent, Belgien Varaktighet: 1 juni 2022 → 3 juni 2022 Konferensnummer: 23 https://eamt2022.com |
Vetenskapsgrenar
- 6121 Språkvetenskaper
- 113 Data- och informationsvetenskap
Projekt
- 1 Aktiv
-
FoTran: Found in Translation - Natural Language Understanding with Cross-Lingual Grounding
Attieh, J., Aulamo, M., Boggia, M., Celikkanat, H., De Gibert Bonet, O., Grönroos, S., Mickus, T., Raganato, A., Scherrer, Y., Sjöblom, E. I., Talman, A., Vazquez , R., Virpioja, S. P., Yli-Jyrä, A., Zosa, E., Tiedemann, J., Celikkanat, H., Raganato, A., Silfverberg, M., Sulubacak, U. & Vazquez , R.
01/09/2018 → 29/02/2024
Projekt: EU Horizon 2020: European Research Council: Consolidator Grant (H2020-ERC-COG)