Lemmatization Experiments on Two Low-Resourced Languages: Low Saxon and Occitan

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

We present lemmatization experiments on the unstandardized low-resourced languages Low Saxon and Occitan using two machine-learning-based approaches represented by MaChAmp and Stanza. We show different ways to increase training data by leveraging historical corpora, small amounts of gold data and dictionary information, and discuss the usefulness of this additional data. In the results, we find some differences in the performance of the models depending on the language. This variation is likely to be partly due to differences in the corpora we used, such as the amount of internal variation. However, we also observe common tendencies, for instance that sequential models trained only on gold-annotated data often yield the best overall performance and generalize better to unknown tokens.
Originalspråkengelska
Titel på värdpublikationTenth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2023) : Proceedings of the Workshop
RedaktörerYves Scherrer, Tommi Jauhiainen, Nikola Ljubešić, Preslav Nakov, Jörg Tiedemann, Marcos Zampieri
Antal sidor11
UtgivningsortStroudsburg
FörlagThe Association for Computational Linguistics
Utgivningsdatum5 maj 2023
Sidor163-173
ISBN (elektroniskt)978-1-959429-50-0
DOI
StatusPublicerad - 5 maj 2023
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangWorkshop on NLP for Similar Languages, Varieties and Dialects - Dubrovnik, Kroatien
Varaktighet: 5 maj 20236 maj 2023
Konferensnummer: 10
https://sites.google.com/view/vardial-2023

Vetenskapsgrenar

  • 6121 Språkvetenskaper
  • 113 Data- och informationsvetenskap

Citera det här