Markov Chain Monitoring

Harshal A. Chaudhari, Michael Mathioudakis, Evimaria Terzi

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

In networking applications, one often wishes to obtain estimates about the number of objects at different parts of the network (e.g., the number of cars at an intersection of a road network or the number of packets expected to reach a node in a computer network) by monitoring the traffic in a small number of network nodes or edges. We formalize this task by defining the Markov Chain Monitoring problem.

Given an initial distribution of items over the nodes of a Markov chain, we wish to estimate the distribution of items at subsequent times. We do this by asking a limited number of queries that retrieve, for example, how many items transitioned to a specific node or over a specific edge at a particular time. We consider different types of queries, each defining a different variant of the Markov Chain Monitoring. For each variant, we design efficient algorithms for choosing the queries that make our estimates as accurate as possible. In our experiments with synthetic and real datasets, we demonstrate the efficiency and the efficacy of our algorithms in a variety of settings.
Originalspråkengelska
Titel på gästpublikationProceedings of the 2018 SIAM International Conference on Data Mining
RedaktörerMartin Ester, Dino Pedreschi
Antal sidor9
FörlagSociety for Industrial and Applied Mathematics
Utgivningsdatum2018
Sidor441-449
ISBN (elektroniskt)978-1-61197-532-1
DOI
StatusPublicerad - 2018
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangSIAM International Conference on Data Mining - San Diego, Förenta Staterna (USA)
Varaktighet: 3 maj 20185 maj 2018
Konferensnummer: SDM18

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap

Citera det här