MentalBERT: Publicly Available Pretrained Language Models for Mental Healthcare

Shaoxiong Ji, Tianlin Zhang, Luna Ansari, Jie Fu, Prayag Tiwari, Erik Cambria

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Mental health is a critical issue in modern society, and mental disorders could sometimes turn to suicidal ideation without adequate treatment. Early detection of mental disorders and suicidal ideation from social content provides a potential way for effective social intervention. Recent advances in pretrained contextualized language representations have promoted the development of several domainspecific pretrained models and facilitated several downstream applications. However, there are no existing pretrained language models for mental healthcare. This paper trains and release two pretrained masked language models, i.e., MentalBERT and MentalRoBERTa, to benefit machine learning for the mental healthcare research community. Besides, we evaluate our trained domain-specific models and several variants of pretrained language models on several mental disorder detection benchmarks and demonstrate that language representations pretrained in the target domain improve the performance of mental health detection tasks.
Originalspråkengelska
Titel på värdpublikationProceedings of the Thirteenth Language Resources and Evaluation Conference
RedaktörerNicoletta Calzolari, et al.
Antal sidor7
UtgivningsortParis
FörlagEuropean Language Resources Association (ELRA)
Utgivningsdatum1 juni 2022
Sidor7184-7190
ISBN (elektroniskt)979-10-95546-72-6
StatusPublicerad - 1 juni 2022
Externt publiceradJa
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangInternational Conference on Language Resources and Evaluation - Marseille, Frankrike
Varaktighet: 20 juni 202225 juni 2022
Konferensnummer: 13
https://lr-coordination.eu/node/406

Vetenskapsgrenar

  • 6121 Språkvetenskaper
  • 113 Data- och informationsvetenskap

Citera det här