Modeling language evolution with codes that utilize context and phonetic features

Javad Nouri, Roman Yangarber

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

We present methods for investigating processes of evolution in a language family by modeling relationships among the observed languages.

The models aim to find regularities---regular correspondences in lexical data. We present an algorithm which codes the data using phonetic features of sounds, and learns long-range contextual rules that condition recurrent sound correspondences between languages. This gives us a measure of model quality: better models find more regularity in the data. We also present a procedure for imputing unseen data, which provides another method of model comparison. Our experiments demonstrate improvements in performance compared to prior work.
Originalspråkengelska
Titel på värdpublikationThe 20th SIGNLL Conference on Computational Natural Language Learning (CoNLL) : Proceedings of the Conference
Antal sidor10
UtgivningsortStroudsburg, PA
FörlagThe Association for Computational Linguistics
Utgivningsdatum2016
Sidor136-145
ISBN (tryckt)978-1-945626-19-7
StatusPublicerad - 2016
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangConference on Computational Natural Language Learning - Berlin, Tyskland
Varaktighet: 11 aug. 201612 aug. 2016
Konferensnummer: 20

Bibliografisk information

CoNLL 2016

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap

Citera det här