Sammanfattning
We present methods for investigating processes of evolution in a language family by modeling relationships among the observed languages.
The models aim to find regularities---regular correspondences in lexical data. We present an algorithm which codes the data using phonetic features of sounds, and learns long-range contextual rules that condition recurrent sound correspondences between languages. This gives us a measure of model quality: better models find more regularity in the data. We also present a procedure for imputing unseen data, which provides another method of model comparison. Our experiments demonstrate improvements in performance compared to prior work.
The models aim to find regularities---regular correspondences in lexical data. We present an algorithm which codes the data using phonetic features of sounds, and learns long-range contextual rules that condition recurrent sound correspondences between languages. This gives us a measure of model quality: better models find more regularity in the data. We also present a procedure for imputing unseen data, which provides another method of model comparison. Our experiments demonstrate improvements in performance compared to prior work.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | The 20th SIGNLL Conference on Computational Natural Language Learning (CoNLL) : Proceedings of the Conference |
Antal sidor | 10 |
Utgivningsort | Stroudsburg, PA |
Förlag | The Association for Computational Linguistics |
Utgivningsdatum | 2016 |
Sidor | 136-145 |
ISBN (tryckt) | 978-1-945626-19-7 |
Status | Publicerad - 2016 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | Conference on Computational Natural Language Learning - Berlin, Tyskland Varaktighet: 11 aug. 2016 → 12 aug. 2016 Konferensnummer: 20 |
Bibliografisk information
CoNLL 2016Vetenskapsgrenar
- 113 Data- och informationsvetenskap
Projekt
-
Revita: Language learning and AI
Yangarber, R., Katinskaia, A., Hou, J., Furlan, G. & Kylliäinen, I. P.
Projekt: Forskningsprojekt
-
LLL: Language Learning Lab
Yangarber, R., Katinskaia, A., Hou, J., Furlan, G. & Kylliäinen, I. P.
Projekt: Forskningsprojekt