Sammanfattning
Foundational large language models (LLMs) can be instruction-tuned to perform open-domain question answering, facilitating applications like chat assistants. While such efforts are often carried out in a single language, we empirically analyze cost-efficient strategies for multilingual scenarios. Our study employs the Alpaca dataset and machine translations of it to form multilingual data, which is then used to tune LLMs through either low-rank adaptation or full-parameter training. Under a controlled computation budget, comparisons show that multilingual tuning is on par or better than tuning a model for each language. Furthermore, multilingual tuning with downsampled data can be as powerful and more robust. Our findings serve as a guide for expanding language support through instruction tuning.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Findings of the Association for Computational Linguistics : EACL 2024 |
Redaktörer | Yvette Graham, Matthew Purver |
Antal sidor | 10 |
Utgivningsort | Kerrville |
Förlag | Association for Computational Linguistics (ACL) |
Utgivningsdatum | 2024 |
Sidor | 1347-1356 |
ISBN (elektroniskt) | 979-8-89176-093-6 |
Status | Publicerad - 2024 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | Conference of the European Chapter of the Association for Computational Linguistics - St. Julians, Malta Varaktighet: 17 mars 2024 → 22 mars 2024 Konferensnummer: 18 |
Bibliografisk information
Publisher Copyright:© 2024 Association for Computational Linguistics.
Vetenskapsgrenar
- 6121 Språkvetenskaper
- 113 Data- och informationsvetenskap