Monolingual or Multilingual Instruction Tuning: Which Makes a Better Alpaca

Pinzhen Chen, Shaoxiong Ji, Nikolay Bogoychev, Andrey Kutuzov, Barry Haddow, Kenneth Heafield

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Foundational large language models (LLMs) can be instruction-tuned to perform open-domain question answering, facilitating applications like chat assistants. While such efforts are often carried out in a single language, we empirically analyze cost-efficient strategies for multilingual scenarios. Our study employs the Alpaca dataset and machine translations of it to form multilingual data, which is then used to tune LLMs through either low-rank adaptation or full-parameter training. Under a controlled computation budget, comparisons show that multilingual tuning is on par or better than tuning a model for each language. Furthermore, multilingual tuning with downsampled data can be as powerful and more robust. Our findings serve as a guide for expanding language support through instruction tuning.

Originalspråkengelska
Titel på värdpublikationFindings of the Association for Computational Linguistics : EACL 2024
RedaktörerYvette Graham, Matthew Purver
Antal sidor10
UtgivningsortKerrville
FörlagAssociation for Computational Linguistics (ACL)
Utgivningsdatum2024
Sidor1347-1356
ISBN (elektroniskt)979-8-89176-093-6
StatusPublicerad - 2024
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangConference of the European Chapter of the
Association for Computational Linguistics
- St. Julians, Malta
Varaktighet: 17 mars 202422 mars 2024
Konferensnummer: 18

Bibliografisk information

Publisher Copyright:
© 2024 Association for Computational Linguistics.

Vetenskapsgrenar

  • 6121 Språkvetenskaper
  • 113 Data- och informationsvetenskap

Citera det här