Morfessor EM+Prune: Improved Subword Segmentation with Expectation Maximization and Pruning

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Data-driven segmentation of words into subword units has been used in various natural language processing applications such as automatic speech recognition and statistical machine translation for almost 20 years. Recently it has became more widely adopted, as models based on deep neural networks often benefit from subword units even for morphologically simpler languages. In this paper, we discuss and compare training algorithms for a unigram subword model, based on the Expectation Maximization algorithm and lexicon pruning. Using English, Finnish, North Sami, and Turkish data sets, we show that this approach is able to find better solutions to the optimization problem defined by the Morfessor Baseline model than its original recursive training algorithm. The improved optimization also leads to higher morphological segmentation accuracy when compared to a linguistic gold standard. We publish implementations of the new algorithms in the widely-used Morfessor software package.
Originalspråkengelska
Titel på värdpublikationProceedings of The 12th Language Resources and Evaluation Conference
RedaktörerNicoletta Calzolari [et al.]
Antal sidor10
UtgivningsortParis
FörlagEuropean Language Resources Association (ELRA)
Utgivningsdatum1 maj 2020
Sidor3944-3953
ISBN (elektroniskt)979-10-95546-34-4
StatusPublicerad - 1 maj 2020
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangLanguage Resources and Evaluation Conference - [LREC 2020 was cancelled]
Varaktighet: 11 maj 202016 maj 2020
Konferensnummer: 12
https://lrec2020.lrec-conf.org/

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap
  • 6121 Språkvetenskaper

Citera det här