On the differences between BERT and MT encoder spaces and how to address them in translation tasks

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Various studies show that pretrained language models such as BERT cannot straightforwardly replace encoders in neural machine translation despite their enormous success in other tasks. This is even more astonishing considering the similarities between the architectures. This paper sheds some light on the embedding spaces they create, using average cosine similarity, contextuality metrics and measures for representational similarity for comparison, revealing that BERT and NMT encoder representations look significantly different from one another. In order to address this issue, we propose a supervised transformation from one into the other using explicit alignment and fine-tuning. Our results demonstrate the need for such a transformation to improve the applicability of BERT in MT.
Originalspråkengelska
Titel på värdpublikationProceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing : Student Research Workshop
RedaktörerJad Kabbara, Haitao Lin, Amandalynne Paullada, Jannis Vamvas
Antal sidor11
UtgivningsortStroudsburg
FörlagThe Association for Computational Linguistics
Utgivningsdatumaug. 2021
Sidor337-347
ISBN (tryckt)978-1-954085-55-8
DOI
StatusPublicerad - aug. 2021
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangAnnual Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing - Bangkok [Online event]
Varaktighet: 5 aug. 20216 aug. 2021
Konferensnummer: 59/11

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap
  • 6121 Språkvetenskaper

Citera det här