Optimization of time series features to estimate brain age in children from electroencephalography

Kartik K. Iyer, James A. Roberts, Michaela Waak, Ajay Kevat, Jasneek Chawla, Leena Lauronen, Sampsa Vanhatalo, Nathan J. Stevenson

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Functional brain age measures in children, derived from the electroencephalogram (EEG), offer direct and objective measures in assessing neurodevelopmental status. Here we explored the effectiveness of 32 preselected 'handcrafted' EEG features in predicting brain age in children. These features were benchmarked against a large library of highly comparative multivariate time series features (>7000 features). Results showed that age predictors based on handcrafted EEG features consistently outperformed a generic set of time series features. These findings suggest that optimization of brain age estimation in children benefits from careful preselection of EEG features that are related to age and neurodevelopmental trajectory. This approach shows potential for clinical translation in the future.Clinical Relevance-Handcrafted EEG features provide an accurate functional neurodevelopmental biomarker that tracks brain function maturity in children.

Originalspråkengelska
Titel på värdpublikation2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
FörlagInstitute of Electrical and Electronics Engineers Inc.
Utgivningsdatum2023
ISBN (elektroniskt)979-8-3503-2447-1
DOI
StatusPublicerad - 2023
MoE-publikationstypA4 Artikel i en konferenspublikation
Evenemang45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Sydney, Australien
Varaktighet: 24 juli 202327 juli 2023

Publikationsserier

NamnProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (tryckt)1557-170X

Bibliografisk information

Publisher Copyright:
© 2023 IEEE.

Vetenskapsgrenar

  • 3112 Neurovetenskaper
  • 3123 Kvinno- och barnsjukdomar

Citera det här