Parameter Curation and Data Generation for Benchmarking Multi-model Queries

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Unlike traditional database management systems which are organized around a single data model, a multi-model database is designed to support multiple data models against a single, integrated backend. For instance, document, graph, relational, and key-value models are examples of data models that may be supported by a multi-model database. As more and more platforms are proposed to deal with multi-model data, it becomes important to have benchmarks that can be used to evaluate performance and usability of the next generation of multi-model database systems. In this paper, we discuss the motivations and challenges for benchmarking multi-model databases, and then present our current research on the data generation and parameter curation for benchmarking multi-model queries. Our benchmark can
be found at http://udbms.cs.helsinki.fi/bench/.
Originalspråkengelska
Titel på gästpublikationProceedings of the VLDB 2018 PhD Workshop
Antal sidor4
FörlagCEUR-WS.org
Utgivningsdatum20 aug 2018
StatusPublicerad - 20 aug 2018
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangVLDB 2018 PhD Workshop: Workshop co-located with the 44th International Conference on Very Large Databases - Rio de Janeiro, Brasilien
Varaktighet: 27 aug 201831 aug 2018
Konferensnummer: VLDB-PhD 2018

Publikationsserier

NamnCEUR Workshop Proceedings
Volym2175
ISSN (elektroniskt)1613-0073

Vetenskapsgrenar

  • 113 Data- och informationsvetenskap

Citera det här