Polyteam Semantics

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Team semantics is the mathematical framework of modern logics of dependence and independence in which formulae are interpreted by sets of assignments (teams) instead of single assignments as in first-order logic. In order to deepen the fruitful interplay between team semantics and database dependency theory, we define "Polyteam Semantics" in which formulae are evaluated over a family of teams. We begin by defining a novel polyteam variant of dependence atoms and give a finite axiomatisation for the associated implication problem. We also characterise the expressive power of poly-dependence logic by properties of polyteams that are downward closed and definable in existential second-order logic (ESO). The analogous result is shown to hold for poly-independence logic and all ESO-definable properties.
Originalspråkengelska
Titel på gästpublikationLogical Foundations of Computer Science
RedaktörerSergei Artemov, Anil Nerode
Antal sidor21
Volym2018
FörlagSpringer
Utgivningsdatum2018
Sidor190–210
ISBN (tryckt)978-3-319-72055-5
ISBN (elektroniskt)978-3-319-72056-2
DOI
StatusPublicerad - 2018
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangLogical Foundations of Computer Science 2018 - Deerfield Beach, Förenta Staterna (USA)
Varaktighet: 8 jan 201811 jan 2018

Publikationsserier

NamnLecture Notes in Computer Science
FörlagSpringer
Volym10703
ISSN (tryckt)0302-9743
ISSN (elektroniskt)1611-3349

Vetenskapsgrenar

  • 111 Matematik
  • 112 Statistik

Citera det här