TY - JOUR
T1 - Promising Biomolecules with High Antioxidant Capacity Derived from Cryptophyte Algae Grown under Different Light Conditions
AU - Abidizadegan, Maryam
AU - Blomster, Jaanika
AU - Fewer, David
AU - Peltomaa, Elina
PY - 2022/7/26
Y1 - 2022/7/26
N2 - Simple Summary In recent decades, the demand for natural and sustainable bioproducts has risen markedly. Accordingly, microalgae have received much attention as a promising biological resource with great industrial potential, since the microalgal production of biologically active compounds can be boosted by changing their cultivation conditions. Light is one of the key factors in the photosynthetic process, which directly affects cell division and the production of biochemical compounds. This study investigated the effect of light color and the species-specific capability of cryptophyte algae to produce phycoerythrin, phenolic compounds, and exopolysaccharides. The produced biomolecules were further studied for their antioxidant activity. The results showed that changes in light quality significantly affect the biochemical compositions of cryptophyte algae. Moreover, species-specific responses to changes in light quality were identified. The quantity and quality of derived biomolecules from the studied cryptophytes are remarkable and indicate that cryptophytes could be considered promising candidates for producing natural biochemical products for practical applications in various industry sectors, such as food, pharmacy, and cosmetics. The accumulation and production of biochemical compounds in microalgae are influenced by available light quality and algal species-specific features. In this study, four freshwater cryptophyte strains (Cryptomonas ozolinii, C. pyrenoidifera, C. curvata, and C. sp. (CPCC 336)) and one marine strain (Rhodomonas salina) were cultivated under white (control), blue, and green (experimental conditions) lights. Species-specific responses to light quality were detected, i.e., the color of light significantly affected cryptophyte biomass productivity and biochemical compositions, but the optimal light for the highest chemical composition with high antioxidant capacity was different for each algal strain. Overall, the highest phycoerythrin (PE) content (345 mg g(-1) dry weight; DW) was reached by C. pyrenoidifera under green light. The highest phenolic (PC) contents (74, 69, and 66 mg g(-1) DW) were detected in C. curvata under control conditions, in C. pyrenoidifera under green light, and in C. ozolinii under blue light, respectively. The highest exopolysaccharide (EPS) content (452 mg g(-1) DW) was found in C. curvata under the control light. In terms of antioxidant activity, the biochemical compounds from the studied cryptophytes were highly active, with IC50 -values < 50 mu g mL(-1). Thus, in comparison to well-known commercial microalgal species, cryptophytes could be considered a possible candidate for producing beneficial biochemical compounds.
AB - Simple Summary In recent decades, the demand for natural and sustainable bioproducts has risen markedly. Accordingly, microalgae have received much attention as a promising biological resource with great industrial potential, since the microalgal production of biologically active compounds can be boosted by changing their cultivation conditions. Light is one of the key factors in the photosynthetic process, which directly affects cell division and the production of biochemical compounds. This study investigated the effect of light color and the species-specific capability of cryptophyte algae to produce phycoerythrin, phenolic compounds, and exopolysaccharides. The produced biomolecules were further studied for their antioxidant activity. The results showed that changes in light quality significantly affect the biochemical compositions of cryptophyte algae. Moreover, species-specific responses to changes in light quality were identified. The quantity and quality of derived biomolecules from the studied cryptophytes are remarkable and indicate that cryptophytes could be considered promising candidates for producing natural biochemical products for practical applications in various industry sectors, such as food, pharmacy, and cosmetics. The accumulation and production of biochemical compounds in microalgae are influenced by available light quality and algal species-specific features. In this study, four freshwater cryptophyte strains (Cryptomonas ozolinii, C. pyrenoidifera, C. curvata, and C. sp. (CPCC 336)) and one marine strain (Rhodomonas salina) were cultivated under white (control), blue, and green (experimental conditions) lights. Species-specific responses to light quality were detected, i.e., the color of light significantly affected cryptophyte biomass productivity and biochemical compositions, but the optimal light for the highest chemical composition with high antioxidant capacity was different for each algal strain. Overall, the highest phycoerythrin (PE) content (345 mg g(-1) dry weight; DW) was reached by C. pyrenoidifera under green light. The highest phenolic (PC) contents (74, 69, and 66 mg g(-1) DW) were detected in C. curvata under control conditions, in C. pyrenoidifera under green light, and in C. ozolinii under blue light, respectively. The highest exopolysaccharide (EPS) content (452 mg g(-1) DW) was found in C. curvata under the control light. In terms of antioxidant activity, the biochemical compounds from the studied cryptophytes were highly active, with IC50 -values < 50 mu g mL(-1). Thus, in comparison to well-known commercial microalgal species, cryptophytes could be considered a possible candidate for producing beneficial biochemical compounds.
KW - 11831 Plant biology
KW - 11832 Microbiology and virology
KW - antioxidant activity
KW - cryptophytes
KW - exopolysaccharides
KW - LED lights
KW - phenolic compounds
KW - phycoerythrin
KW - EXTRACELLULAR POLYMERIC SUBSTANCES
KW - B-PHYCOERYTHRIN
KW - PHENOLIC-COMPOUNDS
KW - R-PHYCOERYTHRIN
KW - BLUE-LIGHT
KW - POLYSACCHARIDES
KW - GREEN
KW - TEMPERATURE
KW - MICROALGAE
KW - IRRADIANCE
U2 - 10.3390/biology11081112
DO - 10.3390/biology11081112
M3 - Article
SN - 2079-7737
VL - 11
JO - Biology
JF - Biology
IS - 8
M1 - 1112
ER -